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The use of Procedural Adaptive 
Animation to increase Visual Fidelity 

Abstract 

This project focuses on the problem of animations being created outside of the context of 

their video game environment, this being a problem as when these animations are used they 

can conflict with the surroundings in a noticeable way to viewers. It is to this end that this 

project examined three agents that have had their animations controlled in separate ways. For 

clarity of movement and easy identification of visual differences the model used for the 

agents were a spider model named ‘Free Low Poly Fantasy Spider’. One was the ‘control’ 

(i.e., use traditional methods of animation) another used methods of procedural animation to 

move in a similar fashion to the traditional animation and the last contained the previous’ 

procedural animation, albeit utilising it to interact with world around it when planning its 

movement. Data was collected from these three agents in the form of visual fidelity on a 

case-by-case basis in comparison with reality. Another metric that was collected involved 

how they affected computer performance, and in what number of instances do they begin to 

cause a problem. Unfortunately, the final project differed from the proposition, in that it 

lacked the proposed Artificial Intelligence functionality and spider behaviours, alongside 

several errors in the procedural animation itself, which produced unnatural movement. It was 

found in conclusion, that traditional animation is more cost-effective, less resource intensive 

and maintained a higher visual fidelity than the final state of the project. However, the project 

holds potential in that the fixing of errors and optimisation may provide a good long-term 

investment to the initial problem. 
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1. Introduction  

In the Video Game Industry Computer, graphics have developed fast in comparison 

with the age of the industry. The movement from no graphical image representation 

all the way to full three-dimensional worlds opened up large amounts of creative 

space for designers, artists and programmers. However, with every jump in 

complexity and freedom more time was needed to develop the assets used in these 

games and subsequent tools that could be used for each discipline (Blow 2004). Due 

to the branching specificity of the many fields, interaction at the base level is very 

restricted and potential areas where different disciplines could provide solutions to 

each other are rarely explored. One such problem is the lack of visual cohesion 

present in actions that interact with the surrounding world (Tinwell 2014) . 

1.1. Motivation 

The majority of video game animations are created via the use of motion capture 

software, which is then manually cleaned up by animators to produce a finished 

sequence. It has been estimated that roughly 70% of motion capture services are 

used of owned by the video games industry (Menache 2000).  This method has been 

highly successful in producing high quality animations, with the caveat that these 

animations look good when viewed out with any context and in perfect situations. 

This can be mitigated to some degree by interpolating between various slightly 

different animated variations on the pose dependant on the circumstances.  

One company that has utilised excessive motion capture with tweaking minor 

details to great effect has been Naughty Dog. Their process for utilising motion 

capture contains several stages and multiple softwares to manage and process all of 

the data into a usable and modifiable format (Damon 2015). However, this is 

horribly time-consuming, inefficient and reduces the options available to small and 

middle-sized teams who follow industry trends. A shift in approach to the problem is 

required in order to maintain efficiency and allow competition in the vein of fluid 

animation regardless of team size. 

 Since movement is one of the most performed actions within video games 

regardless of genre it has been chosen as the animation to be made procedural. One 

preferred use of procedural animation is merging it with motion capture data to 
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utilise the strengths of both. However, with this method it is only possible to get full 

motion data for biped humanoids and only partial data for quadrupeds. Even though 

the use of procedural animation can provide unnatural motion, if refined it can 

provide a solution to the problem of animating non-bipeds and non-quadrupeds. One 

of the greater problems with procedural animation mirrors that of premade 

animation in that the action itself exists within its own frame of motion, in that it 

contains no knowledge of the animations prior to or later than it. A small attached 

Artificial Intelligence could solve this problem by manipulating the legs targets and 

taking into account the surroundings and the path to the goal. 

1.2. Problem Statement 

The nature of these animations interacting with the surrounding world is what 

allows them to be automated via programming as the data for surrounding objects 

can be accessed and utilized in the positioning of the animation. Regardless of the 

size of an animation team or the time given to them, not every potential position for 

an animation can be animated. The traditional method for this problem is to have a 

standard animation for each action, and use them regardless of the context. While 

this method gives acceptable results while providing within a deadline there is a 

significant lack of visual fidelity present in the final product as the programmed 

moment involving interaction with the world is reached it becomes very clear how 

disconnected the animation is from the world. One of the major disconnects seen is 

known as 'clipping' where two models intersect which can, at best remain unseen by 

the player or at worst blatantly remind the player how none of the objects within the 

game truly carry any weight or how they can be exploited with physics present 

elsewhere within the game. Automation reduces the chances of clipping with the 

animation replaced as it can take in the surrounding world as well at the character’s 

position. 

As well as increasing visual fidelity, this project is not a simple exchange of 

workload from animators to programmers but a reduction as well. It would remove 

much of the added complexity in large state machines with much of the blending 

between states becoming obsolete, as the agent in the world’s movement is a 

product of external stimuli serving as a replacement to what its animation states are 
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derived from. This added reduction in labour is caused by the Artificial Intelligence 

that is attached being robust enough to require no hard coded responses as it would 

move away from threats and self-create new goals. It would also be able to be 

placed into a game world with no pre-loaded knowledge and act on its own, making 

it a great investment as its modularity allows for usage in future unrelated projects. 

This dissertation explores methodologies for kinematic animation in 

conjunction with procedural animation techniques that currently exist and determine 

which one is most suitable for the simulation. Methodologies for behavioural AI are 

then explored and the most suitable is similarly decided upon. A simulation is then 

presented containing a model utilising procedural animation and the behavioural AI 

module, as well as a video game 'world' for it to traverse. The Inverse Kinematic 

solution used is a C# adaption of the Forward and Backwards Reaching Inverse 

Kinematic (FABRIK) algorithm (Lasenby and Aristidou 2011)  and the movement 

system involves turning the potential target area into voxels to find the most 

efficient route, then interpolating the movement through a Hermite spline (Kreyszig 

2006). The Artificial Intelligence module will involve the use of ant-colony 

optimisation (Dorigo, Birattari and Stutzle 2006) to seek a series of goals to the end 

point, while avoiding areas of 'threat' (user created areas to test visual fidelity of 

sudden changes in movement and plans). In closing, this dissertation will determine 

if the data gathered shows whether this new method is more or less efficient than 

the current state of the industry.  
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2. Literature review. 

2.1 Procedural Animation 

Procedural techniques have been used in video games since the 1980’s, as memory 

capacity was limited so content was generated at runtime algorithmically (Toy, 

Wichman and Ken 1980). As memory capacity became less of a constraint 

procedural techniques moved to provide content that could instead be automated 

instead of created beforehand, i.e. character’s heads moving to face the player in 

(Quake 3 Arena  1999). 

 As technology has improved and as space has become less of a concern, 

many procedural techniques have become obsolete.  However, the use of procedural 

techniques in animation has begun to rise as many companies strive for efficiency 

and cost effectiveness and this approach can minimize the amount of Manpower 

required on animation teams. 

 One such technology used in the industry is euphoria (NaturalMotion 2007), 

which is used to simulate human self-preservation in the instance of bipedal models 

in rag doll situations.  The technology of euphoria is a very complex, and provides 

natural and life like simulations that are unique dependent on the surrounding 

factors. 

 The game (Overgrowth 2013) utilises an interesting and different approach by 

not using kinematics at all for any of the major animations (Rosen 2014).  It instead 

uses different forms of interpolation between poses to achieve the desired effect, 

much like the use of blend shapes when posing facial animation.  This leads to 

animations not existing in the conventional sense, meaning storage space is 

drastically reduced for every object using this method.  Considering the use of 

interpolation in traditional animation is as management for interruptions, using this 

method every animation is interpolation the interruptions happened seamlessly. 

The system present in (Rain World 2017) much more in line with the goal of 

the project, albeit in two dimensions instead of three. The gameplay, mechanics and 

physics are completely independent from the system, which has the sole purpose of 

visual clarity and fidelity. As it is newly released, the specifics of how it operates are 
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not fully known. However, speculation based on the visuals presented gives the 

impression of each chain of joints seeking the closest surface in the world to attach 

to, and when the main body moves out of reach of that point it then seeks a 

new one.  

2.2 Inverse Kinematics 

Natural and realistic motions remain a present challenge within the fields of 

robotics and animation.  There are a multitude of methods that have been devised 

to deal with this problem within the section are several of the more popular methods 

for solving the problem of inverse kinematics within the industry. 

 If we let the list of joints in a kinematic chain be represented by θ1...θn, 

where n is the total number of joints and each θ is the corresponding angle in 

reference to the plane of rotation (assuming we have knowledge of the rotation 

axis). Certain joints in the chain are if specified as end effectors, which are the joints 

that are directly aiming for a target.  To solve the problem of inverse kinematics 

each θ value must place the end effectors as close to each of their corresponding 

targets as possible.  If there are k number of end effectors let their positions be 

denoted as s1...sk relative to a fixed origin position.  The column vector (s1...sk)
T can 

be written as   .  The target for each end effector have their positions defined as     = 

(t1...tk)
T, where k denotes the same number of end effectors to correspond to each 

target.  Let ei = ti – si, be the most preferred change of a position of the end effector 

to reach the desired target, where i is the ith end effector.  This equation can be 

extrapolated to     =       .  The angles of the other joints in the chain are turned into 

a column vector     = (θ1...θn)
T and the positions of the end effectors then become 

functions of the previous angles in the chain:    =        , or, for i =1…k si=      . 

 This is the mathematics behind Forward Kinematics (FK), where the goal is to 

rotate each joint from the root towards the end effectors so that their position 

matches the target.  Whereby in Inverse Kinematics (IK) the rotations for each joint 

are calculated from the end effector towards the root.  This is represented in the 

equation ti=      . 



1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald  Jack Baptie 

 Although, there may be instances where the solution is impossible due to the 

target being out of reach of the chain, or the constraints of the joints prevent the 

best solution.  It then seems to be necessary that any approach to solve the 

problem would have to be iterative and efficient if accuracy is desired.  Most popular 

approach involves the use of Jacobian matrices to obtain a linear approximation in 

solving the IK problem. 

2.2.1 Jacobian Inverse Methods  

Jacobian methods are common in the field of inverse kinematics as one of the 

original ways in which to handle and compute points within 3D space. They are 

iterative methods where the functions of si are linearly approximated using the 

Jacobian matrix  J(   ) = 
   

   
  . 

Note that J can be viewed as an m × n matrix with scalar entries (with m = 

3k). Forward dynamics are represented in the following equation that describes the 

velocities of the end effectors (using dot notation for first order derivatives)     

         
 
. 

 The Jacobian method leads to creating an iterative method for solving the 

Inverse Kinematics problem (ti=      ). Supposing we have the current values for        

and   , we can compute the Jacobian J = J(   ). We then look to find an update value 

     for the purpose of incrementing the joint angles     by     , so                .   

 Through use of (             
 
.) it can be estimated that:              , as the 

change in end effector joint positions is directly impacted by the angles between 

them. The idea is that the value of      should be chosen such that     is 

approximately equal to     (to a specified tolerance for efficiency). 

 With these facts in mind, one approach to the problem is to solve the 

equation     = J ∆    for ∆   . Unfortunately, this cannot be solved for every instance 

being that J may not be invertible, and in cases where it is the equation      = J-1     is 

able to be produced, the results may yield incorrectly in the determinant of J is zero. 
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 An alternative method involves the use of the equation J(θ) =  
   

   
 
   

where 

the partial derivative is calculated using the formula for  
   

   
  with    substituted for 

   . The reasoning behind  
   

   
  involves altering our perception of the target being a 

free point, and instead as an attachment to the point of the end effector. The 

practical change is that with this formulation of the Jacobian, we are trying to move 

the target positions towards the end effectors, rather than the end effectors towards 

the target positions. However there is a downside to using this in place of     = J ∆   , 

in that the computations of rotations become inconsistent when the target forces the 

chain backwards into itself. 

2.2.1.1 Jacobian Transpose 

Jacobian transpose method was first devised by (Wolovich W. A. ,Elliot H. 1985) and 

the basic idea is simple, where the transpose of J is used instead of the inverse. 

That is, we set              (for some appropriate scalar  ). Obviously the transpose 

is not the same as the inverse, however it is possible to justify the use of the 

transpose in terms of virtual forces.  

The remaining piece of the equation is to determine the value of  , which is a 

way to reduce the value of the error vector     after iterations. For this, we assume 

that the change in end effector position will be        , and so we choose a value for 

  that is as close to     as possible. Giving the equation   
            

               
 . 

2.2.1.2 Jacobian Moore-Penrose   

The Moore-Penrose method (also known as pseudoinverse) sets the value of 

          , where the n × m matrix   is the pseudoinverse of  . The pseudoinverse 

gives the best possible solution to the equation J∆    =     in the sense of least 

squares. First, suppose     is in the range (i.e., the column span) of J . In this case, 

J∆    =    ; furthermore, ∆θ is the unique vector of smallest magnitude satisfying J∆    

=    . Second, suppose that     is not in the range of J. In this case, J∆    =     is 

impossible. However, ∆    has the property that it minimizes the magnitude of the 
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difference J∆    −    . Furthermore, ∆    is the unique vector of smallest magnitude 

which minimizes ||J∆    −   ||, or equivalently, which minimizes ||J∆    −   ||2.  

 The psudeoinverse, while a powerful solution, faces problems when dealing 

with singularities (contexts when a joint lacks degrees of freedom/ the determinant 

Jacobian matrix is equal to zero). When there is no singularities, the pseudoinverse’s 

computations behave as expected, however when approaching a singularity the 

Jacobian matrices begin to return angles that overestimate the distance required, 

even when that distance is negligibly small. When put into practice, rounding errors 

mean that exact singularities are rare and so potential singularities have to be 

detected through value checking for near-zero values. 

The pseudoinverse has the further property that the matrix (I − J†J) performs 

a projection onto the nullspace of J. Therefore, for all vectors ϕ, J(I − J†J)ϕ = 0. 

This means that we can set ∆    by ∆    = J†     + (I − J† J)ϕ for any vector ϕ and still 

obtain a value for ∆θ which minimizes the value J∆    −   . The nullspace method can 

be found in Automatic supervisory control of the configuration and behaviour of 

multibody mechanisms (Liegeois 1977) where it was used to avoid joint limits. By 

suitably choosing ϕ, we can implement extra goals that operate in tandem with end 

effectors tracking the targets. For instance, ϕ might be chosen to try to return the 

joint angles back to rest positions in an attempt to avoid singular configurations.  

With this in mind we can derive an algorithm for the pseudoinverse. Using the 

previously discussed     =  ∆    we can arrive at the normal equation    ∆    =      . For 

clarity we can let    =       and solve the equation (   )∆     =   . In principle, row 

operations can be used to find the solution to this equation with minimum 

magnitude; however, in the neighbourhood of singularities, the algorithm is 

inherently numerically unstable. When all of  ’s rows are linearly independent, then 

    is guaranteed to be invertible. In this case, the minimum magnitude solution ∆     

to the equation (   )∆    =    can be expressed as ∆θ =    (    )    . To prove this, note 

that if ∆    satisfies this equation, then ∆    is in the row span of   and  ∆θ =    .  Using 

these formulae allow us to compute the rotations for several instances of the inverse 

kinematics problem, and allow us to think ‘outside of the box’ in terms of traditional 
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methods of computing the angles. However these methods serve better as examples 

as there is still instability when approaching singularities. 

2.2.1.3 Jacobian Damped Least Squares 

The damped least squares method avoids many of the pseudoinverse 

method’s problems with singularities and can give a numerically stable method of 

selecting ∆   . Rather than just finding the minimum vector ∆    that gives a best 

solution to equation     = J∆   , we find the value of ∆    that minimizes the quantity 

||J∆    −     ||2 + λ2||∆   ||2, where λ ∈ R is a non-zero damping constant. This is 

equivalent to minimizing the quantity ||  
  
  ∆    −      

 
 ||. The corresponding normal 

equation is   
  
 
 
  
  
  ∆    =   

  
 
 
     
 
  .  This can be equivalently rewritten as (    + 

λ2I)∆     =      .  

Under the assumption that     + λ2I is non-singular, the damped least 

squares solution is equal to ∆     = (    + λ2I)-1      . Now     is an n × n matrix, 

where n is the number of degrees of freedom. It is easy to show that (    + λ2I)−1   

=    (    + λ2I)−1. 

Thus, ∆    =    (    + λ2I) −1    . The advantage of this equation over ∆     = (    

+ λ2I)-1       is that the matrix being inverted is only m × m where m = 3k is the 

dimension of the space of target positions, and m is often much less than n. This 

equation can be computed without needing to carry out the matrix inversion, instead 

row operations can find    such that (    +λ2I)    =     and then      becomes the 

solution.  

However, the damping constant depends on the details of the multibody and 

the target positions and must be chosen carefully to make ∆    =    (    + λ2I) −1     

numerically stable. The damping constant should large enough so that the solutions 

for ∆    are accurate near singularities, but if the chosen constant is too large, then 

the convergence rate is too slow.  

2.2.2 FABRIK 
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Forward And Backwards Reaching Inverse 

Kinematics attempts to minimize the system error 

by adjusting each joint one at a time. This method 

starts from the last joint of the chain and works 

forwards, adjusting each joint along the way. It 

then works backward in the same way, in order to 

complete one iteration.  

This method, instead of using the rotations 

of joints, treats finding the joint locations as a 

problem of finding a point on a line – massively 

reducing the computation required. 

Assume p1…pn are the joint positions of a specified 

limb.  Also, assume that p1 is the root joint 

and pn is the end effector, for the simple case 

where only a single end effector exists. The target 

is represented as t and the initial base position 

by b. FABRIK is shown in a graphical 

representation of a full iteration with a single 

target and four joints in Fig 1. 

First the distances between each joint must 

be calculated via di = ∣pi+1 − pi∣, for i = 1… n − 1. 

It must then be determined whether the target is 

reachable or not, firstly by finding the distance 

between the root and the target - let that be 

named dist. If this distance is smaller than the 

total sum of all the combined joint distances, 

represented as the equation         
   
 , the 

target is within reach, otherwise, it is unreachable. If the target is within reach, 

FABRIK can begin reaching the joints towards the target, by using its two-stage 

iteration. In the first stage, the algorithm estimates each joint position starting from 

the end effector, pn, moving inwards to the manipulator base, p1. So, the new 

Figure 1 - An example of a full iteration of 

FABRIK for the case of a single target and 

four manipulator joints.  

(a) The initial position of the manipulator 

and the target, (b) move the end 

effector p4 to the target, (c) find the 

joint   
  which lies on the line L3 that passes 

through the points   
  and p3, and has 

distance d3 from the joint   
 , (d) continue 

the algorithm for the rest of the joints, (e) 

the second stage of the algorithm: move the 

root joint   
 to its initial position, (f) repeat 

the same procedure but this time start from 

the base and move outwards to the end 

effector. The algorithm is repeated until the 

position of the end effector reaches the 

target or gets sufficiently close. 
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position of the end effector becomes the target position,   
   . Find the line, Ln-1, 

which passes through the joint positions      and   
 . The new position of 

     ,     
 , lies on that line with distance dn−1 from   

 . Similarly, the new position of 

the      joint,     
 , can be calculated using the line Ln-1, which passes through 

the     and     
 , and has distance dn-2 from     

 . The algorithm continues until all 

new joint positions are calculated, including the root,   
 . 

Having in mind that the new position of the manipulator base,   
 , should not 

be different from its initial position, a second stage of the algorithm is needed. A full 

iteration is completed when the same procedure is repeated but this time starting 

from the root joint and moving outwards to the end effector. Thus, let the new 

position for the 1st joint,   
  , be its initial position b. Then, using the line L1 that 

passes through the points   
  and   

 , we define the new position of the joint   
   as 

the point on that line with distance d1 from   
 . This procedure is repeated for all the 

remaining joints, including the end effector. In cases where the root joint has to be 

translated to a desired position, FABRIK works as described with the difference that 

in the backward phase of the algorithm, the new position of the root joint,   
 , will 

be the desired and not the initial position. 

After one complete iteration, it is almost always the case (observed 

empirically) that the end effector is closer to the target. The procedure is then 

repeated, for as many iterations as needed, until the end effector is identical or close 

enough (to be defined) to the desired target. The unconstrained version of FABRIK 

converges to any given chains/goal positions, when the total length of serial links is 

greater than the distance to the target (the target is reachable). However, if the 

target is not within the reachable area, there is a termination condition which 

compares the previous and the current position of the end effector, and if this 

distance is less than an indicated tolerance, FABRIK terminates its operation. Also, in 

the extreme case where the number of iterations has exceeded an indicated value 

and the target has not been reached, the algorithm is terminated (however, we have 

never encountered such a situation). 

2.3 Artificial Intelligence 

The inspiration for the adaptive aspect for the animation is derived from the paper 

Robots that can adapt like animals (Cully et al. 2015) . Within this paper, a robot is 
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programmed to move towards a point and each limb movement is algorithmically 

decided with the goal of reaching the point as fast as possible. As this is in effect, 

the team damage the robots limbs in asymmetric and immobilising ways – and so 

the algorithm then decides how it can reach the point with fewer limbs using 

heuristics alongside it. The source code for the paper is freely available; however, it 

is specifically programmed for the physical robot mentioned within their paper and 

adaption to a different format would become a dissertation of its own. 

2.3.1 Ant-Colony optimisation 

One method that was investigated was Ant-Colony optimisation (Dorigo, Birattari 

and Stutzle 2006), this method involves a structure of pathfinding based upon 

several agents following previous agents who distribute randomly. Each agent 

creates a time-sensitive ‘pheromone’ trail behind it for other agents to follow and 

when it reaches a set ‘goal’ it returns down its own trail. Due to distribution and 

random chance, the shortest path (i.e. one where the pheromone trail is consistently 

refreshed) becomes the most optimal. This method was an interesting possibility, 

concerning the use of the main project agents as pathfinding agents. 
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3. Methodology 

3.1 FABRIK Implementation 

Implementation of FABRIK involves two layers of data structures to improve 

readability and modularity; these two layers are IKRigJoint and IKChain. IKRigJoint is 

a simple class that holds data from the points in the chain (position, rotation and 

constraints) and are collected into IKChain. The IKChain is a class that contains a list 

of the joints included in a specific chain and their target. It also calculates and stores 

the distances from point to point and the maximum length of the chain. 

Within Inverse Kinematics, there are cases for when the full calculations in 

FABRIK should not be used, as they can be calculated in other ways more efficiently. 

One of these cases is in the situation that the chain of joints is less than two joints 

long. As this does not require any calculations towards reaching the target as it is 

not a chain and the solution is skipped. 

The second case is where the target is outside the total length of the chain of 

joints. In this case the total distance value from the chain is compared against the 

direct distance calculated. If it is less then each joint of the chain is placed along a 

direct vector towards the target by the distance between each point. 

The bulk of calculations in FABRIK can be dissected into three parts: The 

forward reaching phase, backwards reaching phase and the constraint calculation. 

Before starting the main phase two values need to be stated. The accuracy of the 

final solution -  the minimum distance required from the final joint in the chain and 

the target before the solution ends – and the maximum amount of iterations before 

quitting. These two values are in place to prevent the solution from taking up too 

much system resources.  Before any of these calculations however, several variables 

remain consistent throughout and are initialized for optimisation.  Firstly, the amount 

of current tries must be set to zero, then the initial position of the root of the chain 

must be taken. An empty variable (tempos) for storing the position during 

calculations, another empty variable (lambda) for storing the difference between the 

stored joint distance and actual joint distance for calculations, and finally the initial 

distance from the end of the chain to the target must be set. 
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The forward reaching stage sets the position of the final joint in the chain to 

be equal to the target position.  Then it iterates backwards down the chain towards 

the root, however the iteration ignores the final joint in the chain.  We then set 

lambda to the stored distance between the current point and next one in the chain 

and then divide it by the actual current distance between points. Tempos is then 

filled with the output of an equation that determines the current point's new 

position.  The previous position is also stored for use in constraint calculation 

exceptions.  The new position is then run through the constraint calculation that 

returns either true or false.  If true, the current position of the point becomes the 

new calculated position; if false, the current position remains. 

The backwards reaching stage involves working from the root of the chain 

down towards the end effector; however it ignores the final point in the chain.  One 

major difference in the backwards reaching stage (besides moving along the chain in 

the opposite direction) is that the point that is altered on each loop is the one next 

in the chain, calculated from the current point. Lambda is set to the stored distance 

between the current point and next one in the chain and divided by the actual 

distance between the current point and next one. Tempos is then filled with the 

output of an equation that determines the current point’s new position.  The position 

of the next point is stored for constraint calculation exceptions.  The constraints are 

then checked and the next point is assigned its new position based on the constraint 

check. 

The form of constraints used with FABRIK is cone-based constraints, due to 

the fact that FABRIK is calculated based on position rather than rotation. This is 

done by projecting a cone from the point previous in the chain in a specified 

direction and calculating whether the next point will lie within the cone. If it does, 

the point passes the constraint test and is able to be assigned, if it fails however the 

point is linearly interpolated to the closest edge point of the cone compared to its 

out-of-bounds point. 

3.2 Model Initialisation 

The model itself must be structured in such a way that FABRIK and the Spline 

interpolator can integrate and manipulate it correctly. When the model itself is being 
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created every joint in each limb chain must be in a parent-child pairing with joints 

further up in the chain, terminating at the root joint. When the model is being 

skinned, each joint much contain all of the weight for its surrounding vertices and all 

vertices further towards the next joint in the chain (until reaching that joint’s 

immediate vertices). Each joint must also have its local rotation axes directed 

towards the previous joint, lest a secondary layer of rotations be placed on each 

joint to allow them to remain joined and internally consistent when FABRIK is 

utilised. 

 After the model has been imported, each joint must have the script 

‘IKRigJoint’ attached to it, and each instance of IKRigJoint initialised for that joints 

position and rotation. Then constraint points must be specified and attached to each 

joint, and then the constraint position within IKRigJoint must be set to the specific 

joint’s associated constraint. Elsewhere on the model (this project utilises the root 

parent of all the limbs’ roots) the FABRIK scripts must be placed - one for each limb 

– and then each script populated with the joints in each limb chain from root to end 

effector. 

 On an upper level on the models hierarchy, preferably the topmost parent, 

there should be a container for all of the target points of each limb, for clarity as to 

where each limb is searching. Each of these targets should have the IKRigJoint script 

for interfacing with the FABRIK script as well as containing the related Hermite 

spline scripts, a controller and an interpolator.  

 Outside of the model there should exist a container that will hold the data for 

the splines so that the targets may follow them.  This container should have child 

objects relating to each target that are linked to the Hermite controllers, and during 

runtime each child is populated with the points that will be linked together in a 

Hermite spline. 

3.3 Hermite Spline  

The functionality of the Hermite spline requires: assembling a chain of points, 

adjustment of the interpolation time, interpolation activation calls, and chain 

resetting. 
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3.4 Point Collection 

The points in the world are collected by creating a grid starting 

at the root of the chain extending in the direction of the 

constraint point used in earlier FABRIK constraint calculations. 

The grid is created in a ‘ladder’ format with ‘rung’ being a unit 

vector of the distance from the root to the constraint. Each rung 

extends out left and right an equivalent amount of unit vectors 

as it is from the root. At the end of each unit vector a ray is 

fired directly down and any point that it collides with is 

appended to a list. The list is iterated through and the point 

found closest to the target is chosen as the most suitable point. 

 Checking for points is a function call that is accessed whenever a new step is 

to be taken, and the most suitable point is returned.   

Figure 2 – Numerical 

increments of cone in 

point collection 
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4. Results 

The results that were collected can be split into two categories: Numerical 

performance data, and visual output. All of the data was collected from the same 

University computer for consistency. 

4.1 Numerical performance 

Data was taken from the FABRIK implementation to determine performance of the 

method. The FABRIK solution had the target move in a consistent way for each 

taking of data to increase consistency of the conclusions: 

1. The value for the maximum iterations was altered in multiples of 100, until 

the data structure could not hold the value.  

 

Figure 3 – Maximum iterations allowed against the time taken. 

2. The value for the accuracy was altered in multiples of 100, until the data 

structure could not hold the value.  
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Figure 4 – Required accuracy threshold of solution against time taken.  

3. Both of the values were altered in multiples of 100, until the data structures 

could not hold the value.  

 

Figure 5 – Combined altered iterations and accuracy threshold against time taken. 
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caused visible performance issues. 
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1. The Pre-animated agent -20 

 

Figure 6 – 20 Pre-animated agents executing code without performance issues. 

2. The Procedural agent following pre-defined movements -9 

 

Figure 7 – 9 Procedural agents executing code without performance issues. 

3. The Procedural agent with point collection functionality and subsequent 

Hermite creation - 4 

Figure 8 – 4 Procedural agents with point collection functionality and Hermite creation executing 

code without performance issues. 
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Data for the point collection in Hermite interpolation was also recorded to improve 

understanding of potential areas requiring optimisation. 

Average time to run point collection   0.0008296967s 

Combined average when computing 4 

limbs  

 0.002632141s 

4.2 Visual output 

Each agent has its own performance on level surfaces, as detailed here: 

1. The Pre-

animated agent 

 

2. The Procedural agent following pre-defined movements 

Figure 9 - Foot arc of Pre-animated agent.  

Figure 10 – Foot arc of procedural agent. 
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3. The Procedural agent with point collection functionality and subsequent 

Hermite creation 

Comparison performances can be found for each of the agents on varied terrain: 

1. The Pre-animated agent 

 

Figure 12 – Foot placement of Pre-animated agent on varied terrain. 

2. The Procedural agent following pre-defined movements 

Figure 11 – Generated foot arc of Procedural agent with point collection functionality and Hermite creation. 
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Figure 13 – Foot placement of Procedural agent on varied terrain. 

3. The Procedural agent with point collection functionality and subsequent 

Hermite creation 

 

Figure 14 – Foot placement generated attached to varied terrain from Procedural agent with point 

collection functionality and Hermite creation.  
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5.  Discussion 

With the quantitative data, we can extrapolate that the FABRIK implementation 

maintains solid efficiency with negligible performance issues, as increasing the 

number of iterations is comparable to increasing the number of FABRIK instances. 

However, the more significant performance issue arises from increasing the 

maximum number of iterations over the accuracy threshold, suggesting that the 

accuracy threshold is rarely the terminating argument, most likely due to floating 

point imprecisions.  

As anticipated, the Pre-animated agent affected the system the least, allowing 

for 20 instances before noticeable problems. The Procedural agent following pre-

defined movements began causing performance issues at nine instances, suggesting 

the computational complexity in that agent is roughly twice as much as the pre-

animated agent. The Procedural agent with point collection functionality and 

subsequent Hermite creation performed the worst in terms of system efficiency, with 

only four instances before instability. Suggesting further that the complexity was 

over double that of the Procedural animated agent. 

One potential reason for increased latency involves the metrics acquired for 

the point collection, in that it takes roughly three milliseconds to assign points for 

four limbs (four specified as the agent can be set to walk with steps in two sets of 

four limbs) which becomes a cumulative problem with every agent added. 

Concerning overall visual fidelity, the three different animation techniques can 

be displayed in descending order of fidelity. The handmade animation is the most 

visually appealing, due to each movement being completely fluid and minute 

alterations to any faults already fixed. Foot-placed procedural animation is next, as it 

gives visual cohesion with its surroundings however tweening into and out from each 

footstep lacks fluidity. The repeating procedural animation contains the downsides of 

both methods as the procedural movement looks stilted with the repeating nature 

exacerbated because of it. 
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6. Conclusion 

Several methods are used within the industry to animate actors involving 

combinations of motion capture and procedural methods. However no such methods 

exist for actors where motion capture data does not exist, and all animation of their 

movement is hand-animated. In this dissertation an alternate method is presented 

where all of the movement in a multi-legged actor is procedural. The outcome of the 

project when compared to traditional animation ruled in the favour of traditional 

animation in general efficiency and visual fidelity, however the project contains areas 

that could be optimised and defective areas of procedural functionality that could be 

fixed. 

 Taking the length of the project and the level of experience of the project 

creator into consideration, unless any game or future project contains procedural 

animation as a major feature the investment into the technology is more suited to 

long-term projects or pure research. 

6.1. Future work 

The potential for future work lies within four areas. Firstly, improvements on the 

FABRIK system of constraints are required, or potentially complete recreation of the 

entire handling of that system. Secondly, a model created with the intent of 

including FABRIK and structured to prevent confusion and importing errors. Thirdly, 

a more dynamic method of foot path construction that the Hermite interpolation is 

required for the agent in order to allow for concurrent world dynamics to be able to 

affect movement. Finally, time must be given to allow development and 

implementation of an artificial intelligence system that allows damage to be taken to 

limbs and subsequent adaptations to movement because of that. 
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