
1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

The use of Procedural Adaptive
Animation to increase Visual Fidelity

Abstract

This project focuses on the problem of animations being created outside of the context of

their video game environment, this being a problem as when these animations are used they

can conflict with the surroundings in a noticeable way to viewers. It is to this end that this

project examined three agents that have had their animations controlled in separate ways. For

clarity of movement and easy identification of visual differences the model used for the

agents were a spider model named ‘Free Low Poly Fantasy Spider’. One was the ‘control’

(i.e., use traditional methods of animation) another used methods of procedural animation to

move in a similar fashion to the traditional animation and the last contained the previous’

procedural animation, albeit utilising it to interact with world around it when planning its

movement. Data was collected from these three agents in the form of visual fidelity on a

case-by-case basis in comparison with reality. Another metric that was collected involved

how they affected computer performance, and in what number of instances do they begin to

cause a problem. Unfortunately, the final project differed from the proposition, in that it

lacked the proposed Artificial Intelligence functionality and spider behaviours, alongside

several errors in the procedural animation itself, which produced unnatural movement. It was

found in conclusion, that traditional animation is more cost-effective, less resource intensive

and maintained a higher visual fidelity than the final state of the project. However, the project

holds potential in that the fixing of errors and optimisation may provide a good long-term

investment to the initial problem.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Table of Contents

Abstract ... 1

Table of Contents .. 2

Table of Figures ... 3

1. Introduction .. 4

1.1. Motivation ... 4

1.2. Problem Statement ... 5

2. Literature review. .. 7

2.1 Procedural Animation ... 7

2.2 Inverse Kinematics .. 8

2.2.1 Jacobian Inverse Methods ... 9

2.2.2 FABRIK .. 12

2.3 Artificial Intelligence ... 14

2.3.1 Ant-Colony optimisation .. 15

3. Methodology ... 16

3.1 FABRIK Implementation .. 16

3.2 Model Initialisation ... 17

3.3 Hermite Spline .. 18

3.4 Point Collection ... 19

4. Results ... 20

4.1 Numerical performance .. 20

4.2 Visual output ... 23

5. Discussion.. 26

6. Conclusion ... 27

6.1. Future work ... 27

7. References .. 28

7.1. Appendix .. 29

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Table of Figures
Figure 1 - An example of a full iteration of FABRIK for the case of a single target and four

manipulator joints. .. 13

Figure 2 – Numerical increments of cone in point collection ... 19

Figure 3 – Maximum iterations allowed against the time taken. .. 20

Figure 4 – Required accuracy threshold of solution against time taken. 21

Figure 5 – Combined altered iterations and accuracy threshold against time taken. 21

Figure 6 – 20 Pre-animated agents executing code without performance issues. 22

Figure 7 – 9 Procedural agents executing code without performance issues. 22

Figure 8 – 4 Procedural agents with point collection functionality and Hermite creation executing code

without performance issues. .. 22

Figure 9 - Foot arc of Pre-animated agent. .. 23

Figure 10 – Foot arc of procedural agent. ... 23

Figure 12 – Foot placement of Pre-animated agent on varied terrain. 24

Figure 11 – Generated foot arc of Procedural agent with point collection functionality and Hermite

creation. ... 24

Figure 13 – Foot placement of Procedural agent on varied terrain. ... 25

Figure 14 – Foot placement generated attached to varied terrain from Procedural agent with

point collection functionality and Hermite creation. .. 25

file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613395
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613395
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613396
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613402
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613402
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613403
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613404
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613406
file:///C:/Users/Necron_warrior/Downloads/Dissertation-1-1-Autosaved-1.docx%23_Toc481613406

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

1. Introduction

In the Video Game Industry Computer, graphics have developed fast in comparison

with the age of the industry. The movement from no graphical image representation

all the way to full three-dimensional worlds opened up large amounts of creative

space for designers, artists and programmers. However, with every jump in

complexity and freedom more time was needed to develop the assets used in these

games and subsequent tools that could be used for each discipline (Blow 2004). Due

to the branching specificity of the many fields, interaction at the base level is very

restricted and potential areas where different disciplines could provide solutions to

each other are rarely explored. One such problem is the lack of visual cohesion

present in actions that interact with the surrounding world (Tinwell 2014) .

1.1. Motivation

The majority of video game animations are created via the use of motion capture

software, which is then manually cleaned up by animators to produce a finished

sequence. It has been estimated that roughly 70% of motion capture services are

used of owned by the video games industry (Menache 2000). This method has been

highly successful in producing high quality animations, with the caveat that these

animations look good when viewed out with any context and in perfect situations.

This can be mitigated to some degree by interpolating between various slightly

different animated variations on the pose dependant on the circumstances.

One company that has utilised excessive motion capture with tweaking minor

details to great effect has been Naughty Dog. Their process for utilising motion

capture contains several stages and multiple softwares to manage and process all of

the data into a usable and modifiable format (Damon 2015). However, this is

horribly time-consuming, inefficient and reduces the options available to small and

middle-sized teams who follow industry trends. A shift in approach to the problem is

required in order to maintain efficiency and allow competition in the vein of fluid

animation regardless of team size.

 Since movement is one of the most performed actions within video games

regardless of genre it has been chosen as the animation to be made procedural. One

preferred use of procedural animation is merging it with motion capture data to

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

utilise the strengths of both. However, with this method it is only possible to get full

motion data for biped humanoids and only partial data for quadrupeds. Even though

the use of procedural animation can provide unnatural motion, if refined it can

provide a solution to the problem of animating non-bipeds and non-quadrupeds. One

of the greater problems with procedural animation mirrors that of premade

animation in that the action itself exists within its own frame of motion, in that it

contains no knowledge of the animations prior to or later than it. A small attached

Artificial Intelligence could solve this problem by manipulating the legs targets and

taking into account the surroundings and the path to the goal.

1.2. Problem Statement

The nature of these animations interacting with the surrounding world is what

allows them to be automated via programming as the data for surrounding objects

can be accessed and utilized in the positioning of the animation. Regardless of the

size of an animation team or the time given to them, not every potential position for

an animation can be animated. The traditional method for this problem is to have a

standard animation for each action, and use them regardless of the context. While

this method gives acceptable results while providing within a deadline there is a

significant lack of visual fidelity present in the final product as the programmed

moment involving interaction with the world is reached it becomes very clear how

disconnected the animation is from the world. One of the major disconnects seen is

known as 'clipping' where two models intersect which can, at best remain unseen by

the player or at worst blatantly remind the player how none of the objects within the

game truly carry any weight or how they can be exploited with physics present

elsewhere within the game. Automation reduces the chances of clipping with the

animation replaced as it can take in the surrounding world as well at the character’s

position.

As well as increasing visual fidelity, this project is not a simple exchange of

workload from animators to programmers but a reduction as well. It would remove

much of the added complexity in large state machines with much of the blending

between states becoming obsolete, as the agent in the world’s movement is a

product of external stimuli serving as a replacement to what its animation states are

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

derived from. This added reduction in labour is caused by the Artificial Intelligence

that is attached being robust enough to require no hard coded responses as it would

move away from threats and self-create new goals. It would also be able to be

placed into a game world with no pre-loaded knowledge and act on its own, making

it a great investment as its modularity allows for usage in future unrelated projects.

This dissertation explores methodologies for kinematic animation in

conjunction with procedural animation techniques that currently exist and determine

which one is most suitable for the simulation. Methodologies for behavioural AI are

then explored and the most suitable is similarly decided upon. A simulation is then

presented containing a model utilising procedural animation and the behavioural AI

module, as well as a video game 'world' for it to traverse. The Inverse Kinematic

solution used is a C# adaption of the Forward and Backwards Reaching Inverse

Kinematic (FABRIK) algorithm (Lasenby and Aristidou 2011) and the movement

system involves turning the potential target area into voxels to find the most

efficient route, then interpolating the movement through a Hermite spline (Kreyszig

2006). The Artificial Intelligence module will involve the use of ant-colony

optimisation (Dorigo, Birattari and Stutzle 2006) to seek a series of goals to the end

point, while avoiding areas of 'threat' (user created areas to test visual fidelity of

sudden changes in movement and plans). In closing, this dissertation will determine

if the data gathered shows whether this new method is more or less efficient than

the current state of the industry.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

2. Literature review.

2.1 Procedural Animation

Procedural techniques have been used in video games since the 1980’s, as memory

capacity was limited so content was generated at runtime algorithmically (Toy,

Wichman and Ken 1980). As memory capacity became less of a constraint

procedural techniques moved to provide content that could instead be automated

instead of created beforehand, i.e. character’s heads moving to face the player in

(Quake 3 Arena 1999).

 As technology has improved and as space has become less of a concern,

many procedural techniques have become obsolete. However, the use of procedural

techniques in animation has begun to rise as many companies strive for efficiency

and cost effectiveness and this approach can minimize the amount of Manpower

required on animation teams.

 One such technology used in the industry is euphoria (NaturalMotion 2007),

which is used to simulate human self-preservation in the instance of bipedal models

in rag doll situations. The technology of euphoria is a very complex, and provides

natural and life like simulations that are unique dependent on the surrounding

factors.

 The game (Overgrowth 2013) utilises an interesting and different approach by

not using kinematics at all for any of the major animations (Rosen 2014). It instead

uses different forms of interpolation between poses to achieve the desired effect,

much like the use of blend shapes when posing facial animation. This leads to

animations not existing in the conventional sense, meaning storage space is

drastically reduced for every object using this method. Considering the use of

interpolation in traditional animation is as management for interruptions, using this

method every animation is interpolation the interruptions happened seamlessly.

The system present in (Rain World 2017) much more in line with the goal of

the project, albeit in two dimensions instead of three. The gameplay, mechanics and

physics are completely independent from the system, which has the sole purpose of

visual clarity and fidelity. As it is newly released, the specifics of how it operates are

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

not fully known. However, speculation based on the visuals presented gives the

impression of each chain of joints seeking the closest surface in the world to attach

to, and when the main body moves out of reach of that point it then seeks a

new one.

2.2 Inverse Kinematics

Natural and realistic motions remain a present challenge within the fields of

robotics and animation. There are a multitude of methods that have been devised

to deal with this problem within the section are several of the more popular methods

for solving the problem of inverse kinematics within the industry.

 If we let the list of joints in a kinematic chain be represented by θ1...θn,

where n is the total number of joints and each θ is the corresponding angle in

reference to the plane of rotation (assuming we have knowledge of the rotation

axis). Certain joints in the chain are if specified as end effectors, which are the joints

that are directly aiming for a target. To solve the problem of inverse kinematics

each θ value must place the end effectors as close to each of their corresponding

targets as possible. If there are k number of end effectors let their positions be

denoted as s1...sk relative to a fixed origin position. The column vector (s1...sk)
T can

be written as . The target for each end effector have their positions defined as =

(t1...tk)
T, where k denotes the same number of end effectors to correspond to each

target. Let ei = ti – si, be the most preferred change of a position of the end effector

to reach the desired target, where i is the ith end effector. This equation can be

extrapolated to = . The angles of the other joints in the chain are turned into

a column vector = (θ1...θn)
T and the positions of the end effectors then become

functions of the previous angles in the chain: = , or, for i =1…k si= .

 This is the mathematics behind Forward Kinematics (FK), where the goal is to

rotate each joint from the root towards the end effectors so that their position

matches the target. Whereby in Inverse Kinematics (IK) the rotations for each joint

are calculated from the end effector towards the root. This is represented in the

equation ti= .

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

 Although, there may be instances where the solution is impossible due to the

target being out of reach of the chain, or the constraints of the joints prevent the

best solution. It then seems to be necessary that any approach to solve the

problem would have to be iterative and efficient if accuracy is desired. Most popular

approach involves the use of Jacobian matrices to obtain a linear approximation in

solving the IK problem.

2.2.1 Jacobian Inverse Methods

Jacobian methods are common in the field of inverse kinematics as one of the

original ways in which to handle and compute points within 3D space. They are

iterative methods where the functions of si are linearly approximated using the

Jacobian matrix J() =

 .

Note that J can be viewed as an m × n matrix with scalar entries (with m =

3k). Forward dynamics are represented in the following equation that describes the

velocities of the end effectors (using dot notation for first order derivatives)

.

 The Jacobian method leads to creating an iterative method for solving the

Inverse Kinematics problem (ti=). Supposing we have the current values for

and , we can compute the Jacobian J = J(). We then look to find an update value

 for the purpose of incrementing the joint angles by , so .

 Through use of (

.) it can be estimated that: , as the

change in end effector joint positions is directly impacted by the angles between

them. The idea is that the value of should be chosen such that is

approximately equal to (to a specified tolerance for efficiency).

 With these facts in mind, one approach to the problem is to solve the

equation = J ∆ for ∆ . Unfortunately, this cannot be solved for every instance

being that J may not be invertible, and in cases where it is the equation = J-1 is

able to be produced, the results may yield incorrectly in the determinant of J is zero.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

 An alternative method involves the use of the equation J(θ) =

where

the partial derivative is calculated using the formula for

 with substituted for

 . The reasoning behind

 involves altering our perception of the target being a

free point, and instead as an attachment to the point of the end effector. The

practical change is that with this formulation of the Jacobian, we are trying to move

the target positions towards the end effectors, rather than the end effectors towards

the target positions. However there is a downside to using this in place of = J ∆ ,

in that the computations of rotations become inconsistent when the target forces the

chain backwards into itself.

2.2.1.1 Jacobian Transpose

Jacobian transpose method was first devised by (Wolovich W. A. ,Elliot H. 1985) and

the basic idea is simple, where the transpose of J is used instead of the inverse.

That is, we set (for some appropriate scalar). Obviously the transpose

is not the same as the inverse, however it is possible to justify the use of the

transpose in terms of virtual forces.

The remaining piece of the equation is to determine the value of , which is a

way to reduce the value of the error vector after iterations. For this, we assume

that the change in end effector position will be , and so we choose a value for

 that is as close to as possible. Giving the equation

 .

2.2.1.2 Jacobian Moore-Penrose

The Moore-Penrose method (also known as pseudoinverse) sets the value of

 , where the n × m matrix is the pseudoinverse of . The pseudoinverse

gives the best possible solution to the equation J∆ = in the sense of least

squares. First, suppose is in the range (i.e., the column span) of J . In this case,

J∆ = ; furthermore, ∆θ is the unique vector of smallest magnitude satisfying J∆

= . Second, suppose that is not in the range of J. In this case, J∆ = is

impossible. However, ∆ has the property that it minimizes the magnitude of the

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

difference J∆ − . Furthermore, ∆ is the unique vector of smallest magnitude

which minimizes ||J∆ − ||, or equivalently, which minimizes ||J∆ − ||2.

 The psudeoinverse, while a powerful solution, faces problems when dealing

with singularities (contexts when a joint lacks degrees of freedom/ the determinant

Jacobian matrix is equal to zero). When there is no singularities, the pseudoinverse’s

computations behave as expected, however when approaching a singularity the

Jacobian matrices begin to return angles that overestimate the distance required,

even when that distance is negligibly small. When put into practice, rounding errors

mean that exact singularities are rare and so potential singularities have to be

detected through value checking for near-zero values.

The pseudoinverse has the further property that the matrix (I − J†J) performs

a projection onto the nullspace of J. Therefore, for all vectors ϕ, J(I − J†J)ϕ = 0.

This means that we can set ∆ by ∆ = J† + (I − J† J)ϕ for any vector ϕ and still

obtain a value for ∆θ which minimizes the value J∆ − . The nullspace method can

be found in Automatic supervisory control of the configuration and behaviour of

multibody mechanisms (Liegeois 1977) where it was used to avoid joint limits. By

suitably choosing ϕ, we can implement extra goals that operate in tandem with end

effectors tracking the targets. For instance, ϕ might be chosen to try to return the

joint angles back to rest positions in an attempt to avoid singular configurations.

With this in mind we can derive an algorithm for the pseudoinverse. Using the

previously discussed = ∆ we can arrive at the normal equation ∆ = . For

clarity we can let = and solve the equation ()∆ = . In principle, row

operations can be used to find the solution to this equation with minimum

magnitude; however, in the neighbourhood of singularities, the algorithm is

inherently numerically unstable. When all of ’s rows are linearly independent, then

 is guaranteed to be invertible. In this case, the minimum magnitude solution ∆

to the equation ()∆ = can be expressed as ∆θ = () . To prove this, note

that if ∆ satisfies this equation, then ∆ is in the row span of and ∆θ = . Using

these formulae allow us to compute the rotations for several instances of the inverse

kinematics problem, and allow us to think ‘outside of the box’ in terms of traditional

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

methods of computing the angles. However these methods serve better as examples

as there is still instability when approaching singularities.

2.2.1.3 Jacobian Damped Least Squares

The damped least squares method avoids many of the pseudoinverse

method’s problems with singularities and can give a numerically stable method of

selecting ∆ . Rather than just finding the minimum vector ∆ that gives a best

solution to equation = J∆ , we find the value of ∆ that minimizes the quantity

||J∆ − ||2 + λ2||∆ ||2, where λ ∈ R is a non-zero damping constant. This is

equivalent to minimizing the quantity ||

 ∆ −

 ||. The corresponding normal

equation is

 ∆ =

 . This can be equivalently rewritten as (+

λ2I)∆ = .

Under the assumption that + λ2I is non-singular, the damped least

squares solution is equal to ∆ = (+ λ2I)-1 . Now is an n × n matrix,

where n is the number of degrees of freedom. It is easy to show that (+ λ2I)−1

= (+ λ2I)−1.

Thus, ∆ = (+ λ2I) −1 . The advantage of this equation over ∆ = (

+ λ2I)-1 is that the matrix being inverted is only m × m where m = 3k is the

dimension of the space of target positions, and m is often much less than n. This

equation can be computed without needing to carry out the matrix inversion, instead

row operations can find such that (+λ2I) = and then becomes the

solution.

However, the damping constant depends on the details of the multibody and

the target positions and must be chosen carefully to make ∆ = (+ λ2I) −1

numerically stable. The damping constant should large enough so that the solutions

for ∆ are accurate near singularities, but if the chosen constant is too large, then

the convergence rate is too slow.

2.2.2 FABRIK

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Forward And Backwards Reaching Inverse

Kinematics attempts to minimize the system error

by adjusting each joint one at a time. This method

starts from the last joint of the chain and works

forwards, adjusting each joint along the way. It

then works backward in the same way, in order to

complete one iteration.

This method, instead of using the rotations

of joints, treats finding the joint locations as a

problem of finding a point on a line – massively

reducing the computation required.

Assume p1…pn are the joint positions of a specified

limb. Also, assume that p1 is the root joint

and pn is the end effector, for the simple case

where only a single end effector exists. The target

is represented as t and the initial base position

by b. FABRIK is shown in a graphical

representation of a full iteration with a single

target and four joints in Fig 1.

First the distances between each joint must

be calculated via di = ∣pi+1 − pi∣, for i = 1… n − 1.

It must then be determined whether the target is

reachable or not, firstly by finding the distance

between the root and the target - let that be

named dist. If this distance is smaller than the

total sum of all the combined joint distances,

represented as the equation

 , the

target is within reach, otherwise, it is unreachable. If the target is within reach,

FABRIK can begin reaching the joints towards the target, by using its two-stage

iteration. In the first stage, the algorithm estimates each joint position starting from

the end effector, pn, moving inwards to the manipulator base, p1. So, the new

Figure 1 - An example of a full iteration of

FABRIK for the case of a single target and

four manipulator joints.

(a) The initial position of the manipulator

and the target, (b) move the end

effector p4 to the target, (c) find the

joint
 which lies on the line L3 that passes

through the points
 and p3, and has

distance d3 from the joint
 , (d) continue

the algorithm for the rest of the joints, (e)

the second stage of the algorithm: move the

root joint
 to its initial position, (f) repeat

the same procedure but this time start from

the base and move outwards to the end

effector. The algorithm is repeated until the

position of the end effector reaches the

target or gets sufficiently close.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

position of the end effector becomes the target position,
 . Find the line, Ln-1,

which passes through the joint positions and
 . The new position of

 ,
 , lies on that line with distance dn−1 from

 . Similarly, the new position of

the joint,
 , can be calculated using the line Ln-1, which passes through

the and
 , and has distance dn-2 from

 . The algorithm continues until all

new joint positions are calculated, including the root,
 .

Having in mind that the new position of the manipulator base,
 , should not

be different from its initial position, a second stage of the algorithm is needed. A full

iteration is completed when the same procedure is repeated but this time starting

from the root joint and moving outwards to the end effector. Thus, let the new

position for the 1st joint,
 , be its initial position b. Then, using the line L1 that

passes through the points
 and

 , we define the new position of the joint
 as

the point on that line with distance d1 from
 . This procedure is repeated for all the

remaining joints, including the end effector. In cases where the root joint has to be

translated to a desired position, FABRIK works as described with the difference that

in the backward phase of the algorithm, the new position of the root joint,
 , will

be the desired and not the initial position.

After one complete iteration, it is almost always the case (observed

empirically) that the end effector is closer to the target. The procedure is then

repeated, for as many iterations as needed, until the end effector is identical or close

enough (to be defined) to the desired target. The unconstrained version of FABRIK

converges to any given chains/goal positions, when the total length of serial links is

greater than the distance to the target (the target is reachable). However, if the

target is not within the reachable area, there is a termination condition which

compares the previous and the current position of the end effector, and if this

distance is less than an indicated tolerance, FABRIK terminates its operation. Also, in

the extreme case where the number of iterations has exceeded an indicated value

and the target has not been reached, the algorithm is terminated (however, we have

never encountered such a situation).

2.3 Artificial Intelligence

The inspiration for the adaptive aspect for the animation is derived from the paper

Robots that can adapt like animals (Cully et al. 2015) . Within this paper, a robot is

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

programmed to move towards a point and each limb movement is algorithmically

decided with the goal of reaching the point as fast as possible. As this is in effect,

the team damage the robots limbs in asymmetric and immobilising ways – and so

the algorithm then decides how it can reach the point with fewer limbs using

heuristics alongside it. The source code for the paper is freely available; however, it

is specifically programmed for the physical robot mentioned within their paper and

adaption to a different format would become a dissertation of its own.

2.3.1 Ant-Colony optimisation

One method that was investigated was Ant-Colony optimisation (Dorigo, Birattari

and Stutzle 2006), this method involves a structure of pathfinding based upon

several agents following previous agents who distribute randomly. Each agent

creates a time-sensitive ‘pheromone’ trail behind it for other agents to follow and

when it reaches a set ‘goal’ it returns down its own trail. Due to distribution and

random chance, the shortest path (i.e. one where the pheromone trail is consistently

refreshed) becomes the most optimal. This method was an interesting possibility,

concerning the use of the main project agents as pathfinding agents.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

3. Methodology

3.1 FABRIK Implementation

Implementation of FABRIK involves two layers of data structures to improve

readability and modularity; these two layers are IKRigJoint and IKChain. IKRigJoint is

a simple class that holds data from the points in the chain (position, rotation and

constraints) and are collected into IKChain. The IKChain is a class that contains a list

of the joints included in a specific chain and their target. It also calculates and stores

the distances from point to point and the maximum length of the chain.

Within Inverse Kinematics, there are cases for when the full calculations in

FABRIK should not be used, as they can be calculated in other ways more efficiently.

One of these cases is in the situation that the chain of joints is less than two joints

long. As this does not require any calculations towards reaching the target as it is

not a chain and the solution is skipped.

The second case is where the target is outside the total length of the chain of

joints. In this case the total distance value from the chain is compared against the

direct distance calculated. If it is less then each joint of the chain is placed along a

direct vector towards the target by the distance between each point.

The bulk of calculations in FABRIK can be dissected into three parts: The

forward reaching phase, backwards reaching phase and the constraint calculation.

Before starting the main phase two values need to be stated. The accuracy of the

final solution - the minimum distance required from the final joint in the chain and

the target before the solution ends – and the maximum amount of iterations before

quitting. These two values are in place to prevent the solution from taking up too

much system resources. Before any of these calculations however, several variables

remain consistent throughout and are initialized for optimisation. Firstly, the amount

of current tries must be set to zero, then the initial position of the root of the chain

must be taken. An empty variable (tempos) for storing the position during

calculations, another empty variable (lambda) for storing the difference between the

stored joint distance and actual joint distance for calculations, and finally the initial

distance from the end of the chain to the target must be set.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

The forward reaching stage sets the position of the final joint in the chain to

be equal to the target position. Then it iterates backwards down the chain towards

the root, however the iteration ignores the final joint in the chain. We then set

lambda to the stored distance between the current point and next one in the chain

and then divide it by the actual current distance between points. Tempos is then

filled with the output of an equation that determines the current point's new

position. The previous position is also stored for use in constraint calculation

exceptions. The new position is then run through the constraint calculation that

returns either true or false. If true, the current position of the point becomes the

new calculated position; if false, the current position remains.

The backwards reaching stage involves working from the root of the chain

down towards the end effector; however it ignores the final point in the chain. One

major difference in the backwards reaching stage (besides moving along the chain in

the opposite direction) is that the point that is altered on each loop is the one next

in the chain, calculated from the current point. Lambda is set to the stored distance

between the current point and next one in the chain and divided by the actual

distance between the current point and next one. Tempos is then filled with the

output of an equation that determines the current point’s new position. The position

of the next point is stored for constraint calculation exceptions. The constraints are

then checked and the next point is assigned its new position based on the constraint

check.

The form of constraints used with FABRIK is cone-based constraints, due to

the fact that FABRIK is calculated based on position rather than rotation. This is

done by projecting a cone from the point previous in the chain in a specified

direction and calculating whether the next point will lie within the cone. If it does,

the point passes the constraint test and is able to be assigned, if it fails however the

point is linearly interpolated to the closest edge point of the cone compared to its

out-of-bounds point.

3.2 Model Initialisation

The model itself must be structured in such a way that FABRIK and the Spline

interpolator can integrate and manipulate it correctly. When the model itself is being

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

created every joint in each limb chain must be in a parent-child pairing with joints

further up in the chain, terminating at the root joint. When the model is being

skinned, each joint much contain all of the weight for its surrounding vertices and all

vertices further towards the next joint in the chain (until reaching that joint’s

immediate vertices). Each joint must also have its local rotation axes directed

towards the previous joint, lest a secondary layer of rotations be placed on each

joint to allow them to remain joined and internally consistent when FABRIK is

utilised.

 After the model has been imported, each joint must have the script

‘IKRigJoint’ attached to it, and each instance of IKRigJoint initialised for that joints

position and rotation. Then constraint points must be specified and attached to each

joint, and then the constraint position within IKRigJoint must be set to the specific

joint’s associated constraint. Elsewhere on the model (this project utilises the root

parent of all the limbs’ roots) the FABRIK scripts must be placed - one for each limb

– and then each script populated with the joints in each limb chain from root to end

effector.

 On an upper level on the models hierarchy, preferably the topmost parent,

there should be a container for all of the target points of each limb, for clarity as to

where each limb is searching. Each of these targets should have the IKRigJoint script

for interfacing with the FABRIK script as well as containing the related Hermite

spline scripts, a controller and an interpolator.

 Outside of the model there should exist a container that will hold the data for

the splines so that the targets may follow them. This container should have child

objects relating to each target that are linked to the Hermite controllers, and during

runtime each child is populated with the points that will be linked together in a

Hermite spline.

3.3 Hermite Spline

The functionality of the Hermite spline requires: assembling a chain of points,

adjustment of the interpolation time, interpolation activation calls, and chain

resetting.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

3.4 Point Collection

The points in the world are collected by creating a grid starting

at the root of the chain extending in the direction of the

constraint point used in earlier FABRIK constraint calculations.

The grid is created in a ‘ladder’ format with ‘rung’ being a unit

vector of the distance from the root to the constraint. Each rung

extends out left and right an equivalent amount of unit vectors

as it is from the root. At the end of each unit vector a ray is

fired directly down and any point that it collides with is

appended to a list. The list is iterated through and the point

found closest to the target is chosen as the most suitable point.

 Checking for points is a function call that is accessed whenever a new step is

to be taken, and the most suitable point is returned.

Figure 2 – Numerical

increments of cone in

point collection

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

4. Results

The results that were collected can be split into two categories: Numerical

performance data, and visual output. All of the data was collected from the same

University computer for consistency.

4.1 Numerical performance

Data was taken from the FABRIK implementation to determine performance of the

method. The FABRIK solution had the target move in a consistent way for each

taking of data to increase consistency of the conclusions:

1. The value for the maximum iterations was altered in multiples of 100, until

the data structure could not hold the value.

Figure 3 – Maximum iterations allowed against the time taken.

2. The value for the accuracy was altered in multiples of 100, until the data

structure could not hold the value.

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

20 2,000 200,000 20,000,000 2,000,000,000

Ti
m

e
el

ap
se

d

Iteration threshold

Max Iterations values

Max Iterations values

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Figure 4 – Required accuracy threshold of solution against time taken.

3. Both of the values were altered in multiples of 100, until the data structures

could not hold the value.

Figure 5 – Combined altered iterations and accuracy threshold against time taken.

Data was also taken that tested at what point the number of instances of each agent

caused visible performance issues.

0.00E+00

2.00E-06

4.00E-06

6.00E-06

8.00E-06

1.00E-05

1.20E-05

1.40E-05

1.60E-05

1.80E-05

2.00E-05

0.01f 0.0001f 0.000001f 0.00000001f 0.0000000001f

Ti
m

e
el

ap
se

d

Accuracy threshold

Target Accuracy

Target Accuracy

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

~1 ~100 ~10,000 ~1,000,000 ~100,000,000

Ti
m

e
el

ap
se

d

Value multiplied/divided to iterations/accuracy thresholds

Max Iterations & Target accuracy

Max Iterations & Target accuracy

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

1. The Pre-animated agent -20

Figure 6 – 20 Pre-animated agents executing code without performance issues.

2. The Procedural agent following pre-defined movements -9

Figure 7 – 9 Procedural agents executing code without performance issues.

3. The Procedural agent with point collection functionality and subsequent

Hermite creation - 4

Figure 8 – 4 Procedural agents with point collection functionality and Hermite creation executing

code without performance issues.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Data for the point collection in Hermite interpolation was also recorded to improve

understanding of potential areas requiring optimisation.

Average time to run point collection 0.0008296967s

Combined average when computing 4

limbs

 0.002632141s

4.2 Visual output

Each agent has its own performance on level surfaces, as detailed here:

1. The Pre-

animated agent

2. The Procedural agent following pre-defined movements

Figure 9 - Foot arc of Pre-animated agent.

Figure 10 – Foot arc of procedural agent.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

3. The Procedural agent with point collection functionality and subsequent

Hermite creation

Comparison performances can be found for each of the agents on varied terrain:

1. The Pre-animated agent

Figure 12 – Foot placement of Pre-animated agent on varied terrain.

2. The Procedural agent following pre-defined movements

Figure 11 – Generated foot arc of Procedural agent with point collection functionality and Hermite creation.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Figure 13 – Foot placement of Procedural agent on varied terrain.

3. The Procedural agent with point collection functionality and subsequent

Hermite creation

Figure 14 – Foot placement generated attached to varied terrain from Procedural agent with point

collection functionality and Hermite creation.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

5. Discussion

With the quantitative data, we can extrapolate that the FABRIK implementation

maintains solid efficiency with negligible performance issues, as increasing the

number of iterations is comparable to increasing the number of FABRIK instances.

However, the more significant performance issue arises from increasing the

maximum number of iterations over the accuracy threshold, suggesting that the

accuracy threshold is rarely the terminating argument, most likely due to floating

point imprecisions.

As anticipated, the Pre-animated agent affected the system the least, allowing

for 20 instances before noticeable problems. The Procedural agent following pre-

defined movements began causing performance issues at nine instances, suggesting

the computational complexity in that agent is roughly twice as much as the pre-

animated agent. The Procedural agent with point collection functionality and

subsequent Hermite creation performed the worst in terms of system efficiency, with

only four instances before instability. Suggesting further that the complexity was

over double that of the Procedural animated agent.

One potential reason for increased latency involves the metrics acquired for

the point collection, in that it takes roughly three milliseconds to assign points for

four limbs (four specified as the agent can be set to walk with steps in two sets of

four limbs) which becomes a cumulative problem with every agent added.

Concerning overall visual fidelity, the three different animation techniques can

be displayed in descending order of fidelity. The handmade animation is the most

visually appealing, due to each movement being completely fluid and minute

alterations to any faults already fixed. Foot-placed procedural animation is next, as it

gives visual cohesion with its surroundings however tweening into and out from each

footstep lacks fluidity. The repeating procedural animation contains the downsides of

both methods as the procedural movement looks stilted with the repeating nature

exacerbated because of it.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

6. Conclusion

Several methods are used within the industry to animate actors involving

combinations of motion capture and procedural methods. However no such methods

exist for actors where motion capture data does not exist, and all animation of their

movement is hand-animated. In this dissertation an alternate method is presented

where all of the movement in a multi-legged actor is procedural. The outcome of the

project when compared to traditional animation ruled in the favour of traditional

animation in general efficiency and visual fidelity, however the project contains areas

that could be optimised and defective areas of procedural functionality that could be

fixed.

 Taking the length of the project and the level of experience of the project

creator into consideration, unless any game or future project contains procedural

animation as a major feature the investment into the technology is more suited to

long-term projects or pure research.

6.1. Future work

The potential for future work lies within four areas. Firstly, improvements on the

FABRIK system of constraints are required, or potentially complete recreation of the

entire handling of that system. Secondly, a model created with the intent of

including FABRIK and structured to prevent confusion and importing errors. Thirdly,

a more dynamic method of foot path construction that the Hermite interpolation is

required for the agent in order to allow for concurrent world dynamics to be able to

affect movement. Finally, time must be given to allow development and

implementation of an artificial intelligence system that allows damage to be taken to

limbs and subsequent adaptations to movement because of that.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

7. References

Reference list

Blow, J. 2004. Game development: Harder than you think. Game Development: Harder than You

Think. 1(10): pp.28.

Rain World. 2017. [computer game].Sony PlayStation 4, Windows. Adult Swim Games

Overgrowth. 2013. [computer game].Windows, macOS, Linux. Wolfire Games

Cully, A. et al. 2015. Robots that can adapt like animals. Nature. 521(7553).

Damon, S. 2015. Capturing the last of us: Motion capture pipeline. In: Gdc 2015, 2nd-6th March

2015.

Dorigo, M., Birattari, M. and Stutzle, T., 2006. Ant colony optimization. Ant Colony Optimization,

1(4): pp. 28-39.

Quake 3 arena. 1999.[computer game] Windows.Activision Blizzard.

Kreyszig, E. 2006. Cubic hermite spline. In: Anon. Advanced engineering mathematics. 9th ed.

Wiley. pp.816.

Lasenby, J. and Aristidou, A. 2011. FABRIK: A fast, iterative solver for the inverse kinematics

problem. FABRIK: A Fast, Iterative Solver for the Inverse Kinematics Problem. 73(5): pp.243-260.

Liegeois, A. 1977. Automatic supervisory control of the configuration and behavior of multibody

mechanisms. IEEE Transactions on Systems, Man and Cybernetics. 7(12): pp.868-871.

Menache, A. 2000. Understanding motion capture for computer animation and video games. Morgan

kaufmann.

NaturalMotion2007. Euphoria. NaturalMotion.

Rosen, D. 2014. Animation bootcamp: An indie approach to procedural animation. In: Gdc 2014,

17th-21st March 2014.

Tinwell, A. 2014. The uncanny valley in games and animation. 1st ed. CRC Press.

1302534 CMP403 –Honours Dissertation – Dr Jackie Archibald Jack Baptie

Toy, M., Wichman, G. and Ken, A. 1980. Rogue: Exploring the Dungeons of Doom. Epyx.

Wolovich W. A. ,Elliot H. 1985. A computational technique for inverse kinematics. In: 23rd IEEE

Conference on Decision and Control , 1984 1985. IEEE Xplore, pp.1359-1364.

 7.1. Appendix

Free Low Poly Fantasy Spider. 2008. [Model]. Made by Kalamona. Available from: http://www.turbosquid.com/3d-

models/free-spider-animations-3d-model/398764.

